Serveur d'exploration sur Mozart

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Is silence golden? Effects of auditory stimuli and their absence on adult hippocampal neurogenesis.

Identifieur interne : 000016 ( PubMed/Checkpoint ); précédent : 000015; suivant : 000017

Is silence golden? Effects of auditory stimuli and their absence on adult hippocampal neurogenesis.

Auteurs : Imke Kirste [Allemagne] ; Zeina Nicola ; Golo Kronenberg ; Tara L. Walker ; Robert C. Liu ; Gerd Kempermann

Source :

RBID : pubmed:24292324

English descriptors

Abstract

We have previously hypothesized that the reason why physical activity increases precursor cell proliferation in adult neurogenesis is that movement serves as non-specific signal to evoke the alertness required to meet cognitive demands. Thereby a pool of immature neurons is generated that are potentially recruitable by subsequent cognitive stimuli. Along these lines, we here tested whether auditory stimuli might exert a similar non-specific effect on adult neurogenesis in mice. We used the standard noise level in the animal facility as baseline and compared this condition to white noise, pup calls, and silence. In addition, as patterned auditory stimulus without ethological relevance to mice we used piano music by Mozart (KV 448). All stimuli were transposed to the frequency range of C57BL/6 and hearing was objectified with acoustic evoked potentials. We found that except for white noise all stimuli, including silence, increased precursor cell proliferation (assessed 24 h after labeling with bromodeoxyuridine, BrdU). This could be explained by significant increases in BrdU-labeled Sox2-positive cells (type-1/2a). But after 7 days, only silence remained associated with increased numbers of BrdU-labeled cells. Compared to controls at this stage, exposure to silence had generated significantly increased numbers of BrdU/NeuN-labeled neurons. Our results indicate that the unnatural absence of auditory input as well as spectrotemporally rich albeit ethological irrelevant stimuli activate precursor cells-in the case of silence also leading to greater numbers of newborn immature neurons-whereas ambient and unstructured background auditory stimuli do not.

DOI: 10.1007/s00429-013-0679-3
PubMed: 24292324


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:24292324

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Is silence golden? Effects of auditory stimuli and their absence on adult hippocampal neurogenesis.</title>
<author>
<name sortKey="Kirste, Imke" sort="Kirste, Imke" uniqKey="Kirste I" first="Imke" last="Kirste">Imke Kirste</name>
<affiliation wicri:level="3">
<nlm:affiliation>CRTD, DFG Research Center for Regenerative Therapies Dresden, Fetscherstraße 105, 01307, Dresden, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>CRTD, DFG Research Center for Regenerative Therapies Dresden, Fetscherstraße 105, 01307, Dresden</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Saxe (Land)</region>
<region type="district" nuts="2">District de Dresde</region>
<settlement type="city">Dresde</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Nicola, Zeina" sort="Nicola, Zeina" uniqKey="Nicola Z" first="Zeina" last="Nicola">Zeina Nicola</name>
</author>
<author>
<name sortKey="Kronenberg, Golo" sort="Kronenberg, Golo" uniqKey="Kronenberg G" first="Golo" last="Kronenberg">Golo Kronenberg</name>
</author>
<author>
<name sortKey="Walker, Tara L" sort="Walker, Tara L" uniqKey="Walker T" first="Tara L" last="Walker">Tara L. Walker</name>
</author>
<author>
<name sortKey="Liu, Robert C" sort="Liu, Robert C" uniqKey="Liu R" first="Robert C" last="Liu">Robert C. Liu</name>
</author>
<author>
<name sortKey="Kempermann, Gerd" sort="Kempermann, Gerd" uniqKey="Kempermann G" first="Gerd" last="Kempermann">Gerd Kempermann</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="doi">10.1007/s00429-013-0679-3</idno>
<idno type="RBID">pubmed:24292324</idno>
<idno type="pmid">24292324</idno>
<idno type="wicri:Area/PubMed/Corpus">000043</idno>
<idno type="wicri:Area/PubMed/Curation">000043</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000016</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Is silence golden? Effects of auditory stimuli and their absence on adult hippocampal neurogenesis.</title>
<author>
<name sortKey="Kirste, Imke" sort="Kirste, Imke" uniqKey="Kirste I" first="Imke" last="Kirste">Imke Kirste</name>
<affiliation wicri:level="3">
<nlm:affiliation>CRTD, DFG Research Center for Regenerative Therapies Dresden, Fetscherstraße 105, 01307, Dresden, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>CRTD, DFG Research Center for Regenerative Therapies Dresden, Fetscherstraße 105, 01307, Dresden</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Saxe (Land)</region>
<region type="district" nuts="2">District de Dresde</region>
<settlement type="city">Dresde</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Nicola, Zeina" sort="Nicola, Zeina" uniqKey="Nicola Z" first="Zeina" last="Nicola">Zeina Nicola</name>
</author>
<author>
<name sortKey="Kronenberg, Golo" sort="Kronenberg, Golo" uniqKey="Kronenberg G" first="Golo" last="Kronenberg">Golo Kronenberg</name>
</author>
<author>
<name sortKey="Walker, Tara L" sort="Walker, Tara L" uniqKey="Walker T" first="Tara L" last="Walker">Tara L. Walker</name>
</author>
<author>
<name sortKey="Liu, Robert C" sort="Liu, Robert C" uniqKey="Liu R" first="Robert C" last="Liu">Robert C. Liu</name>
</author>
<author>
<name sortKey="Kempermann, Gerd" sort="Kempermann, Gerd" uniqKey="Kempermann G" first="Gerd" last="Kempermann">Gerd Kempermann</name>
</author>
</analytic>
<series>
<title level="j">Brain structure & function</title>
<idno type="e-ISSN">1863-2661</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acoustic Stimulation (methods)</term>
<term>Animals</term>
<term>Cell Proliferation</term>
<term>Evoked Potentials, Auditory, Brain Stem</term>
<term>Female</term>
<term>Hippocampus (cytology)</term>
<term>Hippocampus (metabolism)</term>
<term>Hippocampus (physiology)</term>
<term>Mice, Inbred C57BL</term>
<term>Models, Animal</term>
<term>Music</term>
<term>Neural Stem Cells (metabolism)</term>
<term>Neural Stem Cells (physiology)</term>
<term>Neurogenesis</term>
<term>Neuronal Plasticity</term>
<term>Noise</term>
<term>SOXB1 Transcription Factors (metabolism)</term>
<term>Time Factors</term>
<term>Vocalization, Animal</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>SOXB1 Transcription Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Hippocampus</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Hippocampus</term>
<term>Neural Stem Cells</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Acoustic Stimulation</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Hippocampus</term>
<term>Neural Stem Cells</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Cell Proliferation</term>
<term>Evoked Potentials, Auditory, Brain Stem</term>
<term>Female</term>
<term>Mice, Inbred C57BL</term>
<term>Models, Animal</term>
<term>Music</term>
<term>Neurogenesis</term>
<term>Neuronal Plasticity</term>
<term>Noise</term>
<term>Time Factors</term>
<term>Vocalization, Animal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We have previously hypothesized that the reason why physical activity increases precursor cell proliferation in adult neurogenesis is that movement serves as non-specific signal to evoke the alertness required to meet cognitive demands. Thereby a pool of immature neurons is generated that are potentially recruitable by subsequent cognitive stimuli. Along these lines, we here tested whether auditory stimuli might exert a similar non-specific effect on adult neurogenesis in mice. We used the standard noise level in the animal facility as baseline and compared this condition to white noise, pup calls, and silence. In addition, as patterned auditory stimulus without ethological relevance to mice we used piano music by Mozart (KV 448). All stimuli were transposed to the frequency range of C57BL/6 and hearing was objectified with acoustic evoked potentials. We found that except for white noise all stimuli, including silence, increased precursor cell proliferation (assessed 24 h after labeling with bromodeoxyuridine, BrdU). This could be explained by significant increases in BrdU-labeled Sox2-positive cells (type-1/2a). But after 7 days, only silence remained associated with increased numbers of BrdU-labeled cells. Compared to controls at this stage, exposure to silence had generated significantly increased numbers of BrdU/NeuN-labeled neurons. Our results indicate that the unnatural absence of auditory input as well as spectrotemporally rich albeit ethological irrelevant stimuli activate precursor cells-in the case of silence also leading to greater numbers of newborn immature neurons-whereas ambient and unstructured background auditory stimuli do not.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">24292324</PMID>
<DateCreated>
<Year>2015</Year>
<Month>02</Month>
<Day>26</Day>
</DateCreated>
<DateCompleted>
<Year>2015</Year>
<Month>11</Month>
<Day>17</Day>
</DateCompleted>
<DateRevised>
<Year>2015</Year>
<Month>03</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1863-2661</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>220</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2015</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>Brain structure & function</Title>
<ISOAbbreviation>Brain Struct Funct</ISOAbbreviation>
</Journal>
<ArticleTitle>Is silence golden? Effects of auditory stimuli and their absence on adult hippocampal neurogenesis.</ArticleTitle>
<Pagination>
<MedlinePgn>1221-8</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00429-013-0679-3</ELocationID>
<Abstract>
<AbstractText>We have previously hypothesized that the reason why physical activity increases precursor cell proliferation in adult neurogenesis is that movement serves as non-specific signal to evoke the alertness required to meet cognitive demands. Thereby a pool of immature neurons is generated that are potentially recruitable by subsequent cognitive stimuli. Along these lines, we here tested whether auditory stimuli might exert a similar non-specific effect on adult neurogenesis in mice. We used the standard noise level in the animal facility as baseline and compared this condition to white noise, pup calls, and silence. In addition, as patterned auditory stimulus without ethological relevance to mice we used piano music by Mozart (KV 448). All stimuli were transposed to the frequency range of C57BL/6 and hearing was objectified with acoustic evoked potentials. We found that except for white noise all stimuli, including silence, increased precursor cell proliferation (assessed 24 h after labeling with bromodeoxyuridine, BrdU). This could be explained by significant increases in BrdU-labeled Sox2-positive cells (type-1/2a). But after 7 days, only silence remained associated with increased numbers of BrdU-labeled cells. Compared to controls at this stage, exposure to silence had generated significantly increased numbers of BrdU/NeuN-labeled neurons. Our results indicate that the unnatural absence of auditory input as well as spectrotemporally rich albeit ethological irrelevant stimuli activate precursor cells-in the case of silence also leading to greater numbers of newborn immature neurons-whereas ambient and unstructured background auditory stimuli do not.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kirste</LastName>
<ForeName>Imke</ForeName>
<Initials>I</Initials>
<AffiliationInfo>
<Affiliation>CRTD, DFG Research Center for Regenerative Therapies Dresden, Fetscherstraße 105, 01307, Dresden, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Nicola</LastName>
<ForeName>Zeina</ForeName>
<Initials>Z</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kronenberg</LastName>
<ForeName>Golo</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Walker</LastName>
<ForeName>Tara L</ForeName>
<Initials>TL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Robert C</ForeName>
<Initials>RC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kempermann</LastName>
<ForeName>Gerd</ForeName>
<Initials>G</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>DC008343</GrantID>
<Acronym>DC</Acronym>
<Agency>NIDCD NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 DC008343</GrantID>
<Acronym>DC</Acronym>
<Agency>NIDCD NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>12</Month>
<Day>01</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Brain Struct Funct</MedlineTA>
<NlmUniqueID>101282001</NlmUniqueID>
<ISSNLinking>1863-2653</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D055748">SOXB1 Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C527783">Sox2 protein, mouse</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Brain. 2000 Aug;123 ( Pt 8):1589-601</RefSource>
<PMID Version="1">10908189</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Neurosci. 2012 Oct;13(10):727-36</RefSource>
<PMID Version="1">22948073</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J R Soc Med. 2001 Apr;94(4):170-2</RefSource>
<PMID Version="1">11317617</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2001 Jun;85(6):2423-31</RefSource>
<PMID Version="1">11387388</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Development. 2003 Jan;130(2):391-9</RefSource>
<PMID Version="1">12466205</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Comp Neurol. 2003 Dec 22;467(4):455-63</RefSource>
<PMID Version="1">14624480</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Acoust Soc Am. 2003 Dec;114(6 Pt 1):3412-22</RefSource>
<PMID Version="1">14714820</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2004 May 13;429(6988):184-7</RefSource>
<PMID Version="1">15107864</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Percept Mot Skills. 2004 Apr;98(2):389-405</RefSource>
<PMID Version="1">15141902</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain. 1970;93(4):793-820</RefSource>
<PMID Version="1">4992433</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hear Res. 1987;30(2-3):207-18</RefSource>
<PMID Version="1">3680066</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Pharmacol Biochem Behav. 1987 Oct;28(2):147-51</RefSource>
<PMID Version="1">3685050</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurosci Lett. 1993 Dec 12;163(2):185-8</RefSource>
<PMID Version="1">8309629</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Child Neurol. 1996 Jul;11(4):265-75</RefSource>
<PMID Version="1">8807415</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurol Res. 1998 Jul;20(5):427-32</RefSource>
<PMID Version="1">9664590</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 1998 Dec;80(6):3148-62</RefSource>
<PMID Version="1">9862913</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Neurosci. 1999 Mar;2(3):260-5</RefSource>
<PMID Version="1">10195219</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Neurosci. 1999 Mar;2(3):266-70</RefSource>
<PMID Version="1">10195220</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2005 Mar 10;434(7030):158</RefSource>
<PMID Version="1">15758989</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain. 2005 Nov;128(Pt 11):2732-41</RefSource>
<PMID Version="1">16141283</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurol Res. 2005 Dec;27(8):791-6</RefSource>
<PMID Version="1">16354537</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2006 Jan 4;26(1):273-8</RefSource>
<PMID Version="1">16399697</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hippocampus. 2006;16(3):329-43</RefSource>
<PMID Version="1">16435309</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2006 Nov 14;103(46):17501-6</RefSource>
<PMID Version="1">17088541</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Neurosci. 2007 Mar;10(3):355-62</RefSource>
<PMID Version="1">17277773</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2007 Mar 21;27(12):3252-9</RefSource>
<PMID Version="1">17376985</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2008;3(4):e1959</RefSource>
<PMID Version="1">18509506</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2009;4(5):e5464</RefSource>
<PMID Version="1">19421325</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Biol. 2007 Jul;5(7):e173</RefSource>
<PMID Version="1">17564499</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuron. 2009 Jun 11;62(5):705-16</RefSource>
<PMID Version="1">19524529</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2009 Jul 10;325(5937):210-3</RefSource>
<PMID Version="1">19590004</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Network. 2009;20(3):137-61</RefSource>
<PMID Version="1">19731146</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur Neuropsychopharmacol. 2010 Jan;20(1):1-17</RefSource>
<PMID Version="1">19748235</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hippocampus. 2010 Jan;20(1):36-43</RefSource>
<PMID Version="1">19405142</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Pediatrics. 2010 Jan;125(1):e24-8</RefSource>
<PMID Version="1">19969615</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroscience. 2010 Jun 2;167(4):1216-26</RefSource>
<PMID Version="1">20206235</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Cogn Sci. 2010 Jul;14(7):325-37</RefSource>
<PMID Version="1">20471301</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Epilepsy Behav. 2011 Mar;20(3):490-3</RefSource>
<PMID Version="1">21292560</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Sports Sci. 2010 Oct;28(12):1337-43</RefSource>
<PMID Version="1">20845211</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell Stem Cell. 2011 May 6;8(5):566-79</RefSource>
<PMID Version="1">21549330</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Physiol Behav. 2011 Oct 24;104(5):981-8</RefSource>
<PMID Version="1">21726571</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2012 Mar 9;335(6073):1238-42</RefSource>
<PMID Version="1">22282476</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Percept Mot Skills. 2000 Aug;91(1):188-90</RefSource>
<PMID Version="1">11011888</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D000161">Acoustic Stimulation</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000379">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000818">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D049109">Cell Proliferation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D016057">Evoked Potentials, Auditory, Brain Stem</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D005260">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006624">Hippocampus</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000166">cytology</QualifierName>
<QualifierName MajorTopicYN="N" UI="Q000378">metabolism</QualifierName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008810">Mice, Inbred C57BL</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D023421">Models, Animal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D009146">Music</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D058953">Neural Stem Cells</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000378">metabolism</QualifierName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D055495">Neurogenesis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D009473">Neuronal Plasticity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D009622">Noise</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D055748">SOXB1 Transcription Factors</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000378">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D013997">Time Factors</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D014828">Vocalization, Animal</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">NIHMS608183</OtherID>
<OtherID Source="NLM">PMC4087081</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>7</Month>
<Day>9</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>11</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="aheadofprint">
<Year>2013</Year>
<Month>12</Month>
<Day>1</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>12</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>12</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>11</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.1007/s00429-013-0679-3</ArticleId>
<ArticleId IdType="pubmed">24292324</ArticleId>
<ArticleId IdType="pmc">PMC4087081</ArticleId>
<ArticleId IdType="mid">NIHMS608183</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
<region>
<li>District de Dresde</li>
<li>Saxe (Land)</li>
</region>
<settlement>
<li>Dresde</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Kempermann, Gerd" sort="Kempermann, Gerd" uniqKey="Kempermann G" first="Gerd" last="Kempermann">Gerd Kempermann</name>
<name sortKey="Kronenberg, Golo" sort="Kronenberg, Golo" uniqKey="Kronenberg G" first="Golo" last="Kronenberg">Golo Kronenberg</name>
<name sortKey="Liu, Robert C" sort="Liu, Robert C" uniqKey="Liu R" first="Robert C" last="Liu">Robert C. Liu</name>
<name sortKey="Nicola, Zeina" sort="Nicola, Zeina" uniqKey="Nicola Z" first="Zeina" last="Nicola">Zeina Nicola</name>
<name sortKey="Walker, Tara L" sort="Walker, Tara L" uniqKey="Walker T" first="Tara L" last="Walker">Tara L. Walker</name>
</noCountry>
<country name="Allemagne">
<region name="Saxe (Land)">
<name sortKey="Kirste, Imke" sort="Kirste, Imke" uniqKey="Kirste I" first="Imke" last="Kirste">Imke Kirste</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/explor/MozartV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000016 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 000016 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Musique
   |area=    MozartV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:24292324
   |texte=   Is silence golden? Effects of auditory stimuli and their absence on adult hippocampal neurogenesis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:24292324" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a MozartV1 

Wicri

This area was generated with Dilib version V0.6.20.
Data generation: Sun Apr 10 15:06:14 2016. Site generation: Tue Feb 7 15:40:35 2023